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Abstract-A numerical solution for the transient natural convection over heat generating vertical cylinders 
of various thermal capacities and radii is presented. A fully implicit finite difference technique is used to 
solve the non-linear set of equations. The rate of propagation of the leading edge effect is given special 
consideration. It is found that this rate, predicted by the one-dimensional conduction solution, is slower 
than that resulting from the boundary layer solution. Also, it increases as the radius and thermal capacity 
of the cylinder decrease, and as the surface heat flux increases. The transient boundary layer thickness is 
found to exceed its steady-state value while the transient average heat transfer coefficient is found to reach 
a minimum, as low as 53% of its steady-state value for the highest value of the modified Grashof number 
studied. Excellent agreement with previous experimental steady-state data as well as with one-dimensional 

theoretical results is obtained. 

1. INTRODUCTION 

IN THE event of pump or power failure, the heat energy 
from the nuclear reactor is removed solely by natural 

convection. Following sudden stoppage of the pump, 
it takes some time for the natural convection to set 
in. During this period, heat is transferred mainly by 
conduction, and it is known that the heat transfer 
coefficient passes through a minimum before reaching 
the final steady-state value. The history of the tran- 
sient heat transfer coefficient and the time required 

for the natural convection flow to set in are essential 
for reactor calculations. 

Illingworth [l] initiated such a transient analysis for 
an infinite flat plate brought suddenly to an isothermal 
temperature different from the surrounding, otherwise 
quiescent, fluid. He presented the velocity and tem- 
perature solutions for a Prandtl number of unity. For 
such a case, no leading edge effect prevails and heat 
is transferred purely by one-dimensional conduction. 
However, for real geometries of finite length, a leading 
edge effect does exist and the transient one-dimen- 
sional analysis is valid, for any axial location, only 
until the leading edge effect reaches that location. This 
effect is marked by the entrainment of ambient fluid 
and only boundary layer solutions are valid thereafter. 
Schetz and Eichhorn [2], and Menold and Yang [3] 

TPresent address: NASA Lewis Research Center, 
Cleveland, OH 44135, U.S.A. 

studied such one-dimensional transients for time- 

varying surface temperatures and heat flux boundary 
conditions over a flat plate. These analyses, however, 
do not give the duration of the one-dimensional pro- 

cess that collapses upon the arrival of the leading edge 

effect. 
Siegel [4] used the Karman-Pohlhausen integral 

method to solve the momentum and energy boundary 
layer equations for a semi-infinite flat plate. He 
analyzed the problem for a step change both in surface 

temperature and in heat flux, and is the first to point 
out the effect of leading edge and time duration of the 

one-dimensional conduction process. Subsequently, 
Goldstein and Eckert [5] reported experimental 
results for a flat plate supplied with sudden heat input, 
and verified the predictions of Siegel [4]. Gebhart [6] 
analyzed the case of a semi-infinite flat plate with 
thermal capacity using the integral technique, and 
obtained results in close agreement with the exper- 
imental data of Gebhart and Adams [7]. Goldstein 
and Briggs [8] presented solutions for predicting the 
duration of the one-dimensional process from the 
results of an infinite plate. Their analysis includes 
various boundary conditions such as a step change in 
surface temperature, surface heat flux, plates of vari- 
ous thermal capacity and fluids of various Prandtl 
numbers. 

Mollendorf and Gebhart [9], and Mahajan and 
Gebhart [lo] observed the leading edge effect propa- 
gation and found that this effect reaches any axial 
position about 20% faster than that predicted by 
Goldstein and Briggs [8]. Yang [I I] and Nanbu [12] 
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NOMENCLATURE 

0, b arbitrary constants .\’ axial coordinate measured upward 

Bi Biot modulus x dimensionless axial coordinate 

c thermal capacity of the cylinder per unit x RL penetration distance of the leading edge 

surface area effect based on the present boundary 

C’ small number for determining the arrival layer solution 

of the leading edge effect X “K penetration distance of the leading edge 

9 acceleration due to gravity effect based on the Brown and Riley 

Gr, modified local Grashof number, criterion 

(,9[19”.X4/kV2) xc;, penetration distance of the leading edge 

Gr,. modified Grashof number at x = x,,,, effect based on the Goldstein and 

I1 local heat transfer coefficient Briggs criterion 

/( thermal conductivity of the fluid x, penetration distance of the leading edge 

kc,, thermal conductivity of the cylinder effect based on Joshi’s criterion of no 

material overshoot in the mass flow rate 

L.E.E. leading edge effect AX grid size in the axial direction. 

nz iteration index 

Nu, local Nusselt number, h/k Greek symbols 
Pr Prandtl number of the fluid 

9” instantaneous energy generation rate ; 

thermal diffusivity of the fluid 
coefficient of volumetric expansion of the 

within the cylinder per unit surface fluid 
area a small number for test of convergence 

9”’ volumetric energy generation rate YI pseudo-similarity variable, 

9N normalized local heat flux, ((r2-r~)/2rO){,9B(f~-t,)!4.YI!2j”4 

-(klq”)(at/~r)I,~,~, vu R,,(5W ' 5 
Q thermal capacity parameter \’ kinematic viscosity of the fluid 

r radial coordinate measured from the : stretched axial coordinate, 
centerline of the cylinder 2{4.w’~g~(r, - t, )ri) “4 

r. radius of the cylinder t dimensionless time 

R dimensionless radial coordinate i time 

&I fourth root of the modified Grashof AZ step size in time 
number with r,, as length i dummy variable. 

R, edge of the boundary layer 

AR grid size in the radial direction Subscripts and superscript 
t temperature of the fluid within the C value at the centerline of the 

boundary layer cylinder 
T dimensionless temperature S value at the cylinder surface 

u, 2 velocity components in the .Y-, ss value at steady state 
r-directions, respectively X value in the fret-stream 

U, V dimensionless velocity components in the end value at downstream end 
,I’-, R-directions. respectively average value from .Y = 0 to _Y,..~,. 

analyzed the transient boundary layer equations and 
concluded that the departure from the one-dimen- 
sional process occurs at a critical time when an essen- 
tial singularity in the governing equations appears. 
Brown and Riley [13] pointed out that this critical 
time resulted in a leading edge propagation criterion 
different from that proposed by Goldstein and Briggs 
[8]. Recently Joshi [14] compared four different 
propagation criteria with the experimental results of 
Mollendorf and Gebhart [9], and Mahajan and 
Gebhart [lo]. He concluded that the propagation dis- 
tance based on the criterion of ‘no overshoot in the 
mass flow rate during the one-dimensional process’ 
yields the fastest propagation amongst all the four 

criteria. This was found to be in close agreement with 

the experiments in water. 
Hellums and Churchill [I51 solved the unsteady 

boundary layer equations using a finite difference 
method for a semi-infinite isothermal flat plate in air, 
while Sammakia et al. [ 161 analyzed the case of a flat 
plate with constant heat flux and finite heat capacity. 
The latter included the effect of radiation in their 
analysis and compared their numerical results with 
the experimental data in air. They concluded that the 
effect of radiation is negligible at high heat flux levels. 
Later, Sammakia et ul. [17] presented numerical and 
experimental results of natural convection adjacent to 
a vertical plate of finite heat capacity in water. Carey 
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[ 18, 191 analyzed the flat plate in high Prandtl number 
fluid with zero and, finite thermal capacity, and con- 
firmed the existence of a dual layer structure during the 

entire transient process. He also found that the time 
to reach steady state was proportional to Prandtl 
number raised to the power 3/5. 

Joshi and Gebhart [20] analyzed the one-dimen- 
sional transient process adjacent to a flat plate of finite 
thermal capacity subjected to sudden changes in heat 
flux and temperature in water at its density extremum. 
More recently Joshi and Gebhart [21] studied ana- 

lytically and experimentally the case of a flat plate 
subjected to a sudden change of heating rate. During 
this process of switching over from one initial steady 
state to another, periodic disturbances were observed 
to propagate downstream from the leading edge. 
These disturbances lead to transient transition to tur- 

bulence before relaminarization takes place, and this 
transition increases the heat transfer effectiveness, 

Gokhle [22] analyzed the case of transient natural 
convection adjacent to an isothermal flat plate, with 
heat sources in air and water, by the finite difference 
method. The heat source was taken to be a function 
of the local temperature gradient. 

While the flat plate has been studied in detail, the 
cylinder, which is the geometry for heat generating 
fuel rods in a reactor, has been given little attention. 

It is well known that the boundary layer over a slender 
cylinder is thicker than that over a flat plate. Hence 
the results of flat plate analysis do not apply directly 
to slender cylinders and they deserve a separate study. 
Goldstein and Briggs [8] carried out a one-dimen- 

sional study of transient natural convection from cyl- 
inders. They presented analytical solutions for the 
duration of the one-dimensional process from the con- 
duction analysis for infinite cylinders. Subsequently, 
Dring and Gebhart [23] presented experimental results 
for the transient average temperature of Nichrome 
wires in silicone oils and in air. They also compared 

their experimental results with the pure conduction 
results, and with a simplified quasistatic theory that 
yields a simple exponential solution for the tem- 
perature response. The quasistatic theory failed, how- 
ever, for silicone fluids. Even for air, the conduction 

solution was found to be better than that predicted 
by this theory. 

Some steady-state analyses for a cylinder also exist. 
Amongst them, Minkowycz and Sparrow [24] 
obtained the steady boundary layer velocity and tem- 
perature profiles for isothermal cylinders of various 
radii placed in air using the local non-similarity 

method. Nagendra et a/. [25] carried out a numerical 
study of steady boundary layer equations for cylinders 
subjected to uniform heat flux and compared their 
predictions with the experimental results of their 
earlier study in water. They found that the differ- 
ence of heat transfer coefficients between the cases of 
isothermal and constant heat flux cylinders is about 
6%. Chen and Yuh [26] studied steady heat and mass 
transfer processes near cylinders with uniform wall 

heat and mass fluxes, and wall temperature numeri- 
cally. Their study covered a wide range of radii and 
Prandtl numbers. Subsequently Chen [27] studied the 
power law variation of wall heat flux for cylinders in 
steady natural convection flow for various Prandtl 
numbers. More recently Lee et al. [28] solved the 
steady boundary layer equations using the non-similar 
transformation followed by the finite difference 

method with the spline interpolation technique. They 
considered the wall temperature varying as a function 
of the axial coordinate. 

Herein we present a numerical solution of the tran- 
sient natural convection adjacent to heat generating, 
vertical cylindrical fuel rods of various thermal 

capacities, radii and surface heat flux. We compare 
the boundary layer solution with the one-dimensional 
conduction solution, and compute the leading edge 
propagation time as proposed by Brown and Riley 

[ 131, and by Joshi [ 141. The accuracy of the numerical 
calculations is assessed by comparison with the 

steady-state local non-similar results of Minkowycz 
and Sparrow [24], the experimental and analytical 
results of Nagendra et al. [25], and the one-dimen- 
sional results of Goldstein and Briggs [8] obtained 
through Laplace transforms. 

2. ANALYSIS 

The transient natural convection boundary layer 
equations adjacent to a heat generating, vertical cyl- 
inder (see inset of Fig. 10) for laminar, constant prop- 
erty, viscous flow with Boussinesq approximation are 

(2) 

(3) 

subject to the following boundary and initial con- 
ditions : 

U=O= V=T at r=OforallXandR 

U= 0 = V at R = R,forallXandz 

U=O= T at X=OforallRandt 

U-O,T-+O as R+coforallXandr 

= 1 forallXandz (4) 

where 

X=?R,, 
r0 

R=rR,, 
r. 

52R; 
ri 

T=k(t-t,)R 

q"r0 ' 
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fourth root of the modified Grashof number. 
The boundary conditions in equation (4) imply that 

the temperature of the cylinder has been lumped in 
the radial direction. For conduction through a solid 
cylinder of radius r,,, internal energy generation rate 
(I”‘, thermal conductivity k,,,. and heat transfer 
coefficient h, it is easy to show that 

(k-J hl-,, 
(t,-t,) 2k,, = Bi’ 

For air as the fluid and Cr--Ni steel as the cylinder 

material, the value of Bi is found to be 1.3 x 10 ~’ for 
R, = 4 at X = 100. For smaller values of R,, such 
as 0.5. Bi is as low as 4x lo-“, thus justifying our 

assumption about the radially invariant temperature 
of the cylinder. 

Though the temperature of the cylinder varies in 

the axial direction, the axial heat conduction has been 
neglected. The steady-state surface temperature of the 
cylinder has been found to vary as T, = hX”, where 

the constants a and h vary with R,,. The axial heat 
flux at any location Xcan be shown to be 

dt, k 
k,, xx = -uhq” 0 ; X” ’ 

and the radial heat flux in the fluid surrounding the 

cylinder is 

X”. 

The ratio of the total axial heat transfer to the radial 

heat transfer can be shown to be -(r,/L)(R,/4)(a/X)/ 
Bi. For R. = 4 and at X = 100, this ratio is found 
to be about -0.05. For smaller values of R, such 
as 0.5, this ratio is as small as - 1.4 x 10m3. Thus 
axial conduction is negligible. Also, the effect of sur- 
face radiation can be neglected for a highly polished 

surface. 
The one-dimensional conduction forms of equa- 

tions (2) and (3) are 

(5) 

subject to the same initial and boundary conditions 
(in the radial direction) as in equations (4) for U and 
T. The penetration distance of the leading edge effect 
at any instant z as proposed by Brown and Riley [ 131 
is 

XBR(7) = 

s 
T max [U(ll/, R)] d$ (7) 
0 

where the velocity U(T, R) is calculated from the 
solution of equations (5) and (6). The actual pcn- 
etration distance from the present boundary layer 
solution, estimated by the appearance of the cross 
stream velocity component, that is, by 

J’(T, R, A’)/ C’,,(R, X) 3 1’ (8) 

is referred to as A’,,. For the results presented here. c 
was taken to be 0.01. The penetration distance 
obtained by applying the criterion of no overshoot in 
the mass flow rate during the one-dimensional 
process, as proposed by Joshi [l4], is 

s 

R, 

s 

R, 
X, = U,,(R.X)RdR > U(T, R)RdR. (9) 

0 0 

Values of these penetration distances are compared 
later on. 

3. SOLUTION 

The governing boundary layer equations (l)-(3) 
subject to the boundary and initial conditions (4) are 
solved by a fully implicit finite difference marching 
technique. This technique is a modified form of the 

one described by Hornbeck [2Y] for flow through a 
circular pipe. While marching in the axial direction, 
the nonlinearity of the inertial terms and the inter- 
linkage of momentum and energy equations are 
retained. Thus the finite difference form of equations 
(l)-(4) are solved iteratively by the Thomas Algo- 
rithm for tridiagonal equations [2Y] at any axial 
position. This iterative axial marching is repeated at 

each time step. Since the method is fully implicit, 
there is no constraint on the time step due to stability 
considerations. 

3.1. Computational details 
Variable grid sizes were used in the axial and radial 

directions. Figure I (a) shows the steady-state values 
of the surface temperature T,(X) (solid line) and the 
maximum value of the axial velocity component U,,,, 
(dashed line) for NX = 60 and 120, where NX is 
the number of grids in the X-direction. A maximum 
difference of 2.6% is observed in I/,;,, near the leading 
edge and only 0.6% near the downstream end. The 

corresponding differences in T,(X) are 1.1 and 0.2%. 
Thus, NX is taken to be 60 for all the results presented 
here. Grid size (AX) in the marching direction was 
taken as 0.2 near the upstream leading edge, and was 
increased to 2.0 far away from the leading edge. The 
adequate number of grid points in the radial direction, 
also determined in a similar manner, was found to 
increase with decreasing cylinder radius. The number 
of grids in the R-direction was 171 for a cylinder of 
4 < R,, < 50 but it was required to increase it to 551 
for R,, = 0.5. Also, the smaller the value of &. the 
finer was the radial grid size near the surface of the 
cylinder in order to take care of increasing curvature 
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I(a). Steady-state temperature and maximum value of 
axial velocity. 

effects. The radial grid size near the cylinder for R, = 4 
was 0.1. This was reduced to 0.0125 for R. = 0.5. 

The step size in time, AZ, was steadily increased 
from a small initial value. Figure 1 (b) shows the tran- 
sient Nusselt number and dimensionless shear stress 
at X = 100 for two different At ranges. Values of At 
in the first range (solid lines) are four times those in 

the second range (solid circles). The two results are 
almost indistinguishable for z > 4, that is, for almost 
the entire duration of the transient. It may be pointed 
out that Ingham [30] could not get a AT-independent 
heat transfer coefficient for the case of a flat plate 
when its temperature is suddenly increased from that 
of the surrounding fluid. In the present study, we did 
not observe such a phenomenon in any of the cases 

analyzed. Typical values of Ar used in the study are 
Ar = 0.1 for 0 < z < 1, AT = 1 for 1 < z < 10, AZ = 5 

for10<7<300,Az=20for300<r~400,Az=.50 
for 400 < z < 1000, AZ = 200 for 1000 < z < 5000, 

and A7 = 1000 for 7 > 5000. 
To terminate the iteration of the linked finite differ- 

ence form of equations (l)-(3) at any axial location X 
and time 7, the axial velocity distribution between 

two consecutive iterations satisfied the criterion 

Il-Um(X,R,~)/Um+‘(X,R,~)I <F forallR>R, 

where m is the iteration index. The value of E was 
taken to be 10-j for the results presented here. The 
number of iterations was around 11 for X-locations 

away from the leading edge and was as high as 30 
near the leading edge. Also, these numbers were found 
to increase with increasing cylinder radius. A relax- 

ation factor of 0.6 was necessary for momentum and 

energy equations to converge. 

3.2. Accuracy 
In order to check our numerical procedure, we com- 

pared our steady-state finite difference solutions for 
isothermal cylinders with the local non-similar solu- 

tions of Minkowycz and Sparrow [24]. Figure 2 shows 
this comparison of boundary layer temperature for 
air with Pr = 0.733 and for two values of the stretched 
axial coordinate 5 = 0.5 and 2.0. There is an excellent 
match between the two solutions. Also, we compared 
our steady average heat transfer coefficient with the 
correlations proposed by Nagendra et al. [25]. Table 
1 shows this comparison for X = 100 and Pr = 0.72. 

This value of X corresponds to a local Grashof num- 
ber of 10’. A maximum deviation of 10% is observed. 
Noting that the correlations of Nagendra et al. [25] 
were based on the experimental data for water and 
not for air (Pr = 0.72), and that the experimental 
data are from one source only, the agreement is quite 
satisfactory. 

As already mentioned, the steady-state surface tem- 

- a=1 for 0cTr20 
AT=20 forZO<T 6 300 
AT =25 for 3WTG 400 
~D1OOfar4aM~Cc1000 
~~~OOfOr100~~~5~0 
~~=103fOr5000~:c16 

. a-c=0.25forOC G 20 
oT=5for20c’T: G&O0 
aT=25for400cT c 1000 
A T =1~forlOOO<~~ 5000 
A T=5OOtor5COO~:Q to5 -10 

FIG. l(b). Transient Nusselt number and shear stress at X = 100 
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FIG. 2. Boundary layer temperature for isothermal cylinders. 

Table 1. Comparison of average heat transfer coefficient 

Nagendra Deviation 

R,, nu(L, = 100) Present et LII. [25] W) 
- 

0.5 0.1443 0.745 0.710 5 
(wire) 

1.5 0.4328 0.440 0.480 X 
(slender cylinder) 

4.0 1.1542 0.320 0.357 IO 
(slender cylinder) 

Table 2. Values of c1 and h in T, = hX” 

R,, 
_ ~~~ 

0.5 

1.5 

4.0 

15.0 

50.0 

n. (&I = 100) 

0.1443 
(wire) 
0.432X 

(slender cylinder) 
I. I542 

(slender cylinder) 
4.3281 

(short cylinder) 
14.427 

Present 

0.0875 

0.1288 

0.1631 

0.1941 

0.2012 

Nagendra 
er ul. [25] 

0.04 

0.138 

0.138 

0.2 

0.2 

h (Present) 

0.9653 

I.435 I 

I .7363 

I .x922 

I .9574 
(short cylinder) 

perature of the cylinder is found to vary as T, = bX”, 
where the constants u and b vary with R,. The values 
of (1 and b for various values of R. and the cor- 
responding values of q,, = R,(5X) ‘,’ at X = 100 arc 
presented in Table 2. Also included in this table is the 
value of u from Nagendra rt ui. [25]. It is expected that 
the values of constant b and exponent a be continuous 
functions of Ro. However, only three discrete values 
are given in Nagendra et al. [25]. For two slender 
cylinders of radii R,, = 1.5 and 4.0, the values of 
exponent a are 0. I288 and 0. I63 1, respectively. These 

values of a are on either side of the single value 0. I38 
given by Nagendra et al. [25]. For higher values of R, 

(short cylinders), the value of a approaches that for 
the flat plate, namely 0.2, in the present study as well 
as in Nagendra et al. [25]. It is found that the smaller 
the radius, the more uniform is the surface tem- 
perature of the cylinder. 

For R, = 4, Pr = I and Q = 0, the transient vel- 
ocity values and the penetration distance X,;, of the 
leading edge effect obtained from the solution of equa- 
tions (5) and (6) at time r = I6 x 10“ are shown in 



Transient natural convection over a heat generating vertical cylinder 

Table 3. Values of U and Xo, for Pr = 1, Q = 0 and R, = 4 at T = 16 x lo4 

1299 

U/(27%7) 

Percentage Percentage 
Goldstein and difference Goldstein and difference 

rlro Present Briggs [8] W) Present Briggs [8] W) 

2 1.2080 1.2088 0.07 0.6426 0.6393 0.51 
5 2.7785 2.778 I 0.01 I .4689 1.4602 0.60 

15 4.4652 4.4646 0.01 2.2988 2.2845 0.63 
25 4.9993 4.9991 0.004 2.4952 2.4791 0.65 
30 5.1074 5.1074 0.00 2.5077 2.4911 0.67 
35 5.1510 5.1513 0.006 2.4870 2.4700 0.69 
40 5.1464 5.1469 0.01 2.4426 2.4255 0.71 
70 4.5681 4.4698 0.04 I .9492 1.9332 0.83 

150 2.1588 2.1606 0.08 0.6903 0.6818 1.24 

Table 3. Here 

Also presented in Table 3 are the closed form ana- 

lytical solutions of Goldstein and Briggs [8] obtained 
through Laplace transforms. The present numerical 
values of U match very well with the analytical values ; 
the maximum difference being only 0.08%. The values 
of penetration distance Xo, also match well with a 
maximum difference of 1.2%. The grid size in the 

radial direction for the numerical results in Table 3 
was increased from 0.25 near the cylinder surface to 
5.0 away from the cylinder. It may be pointed out that 
for the boundary layer solutions reported here for 
R, = 4, the corresponding values of AR are much 
smaller, being only 0.1 and 1 .O, respectively. 

4. RESULTS AND DISCUSSION 

are shown in Figs. 3(a) and (b) for R, = 4 and 
Pr = 0.72 at various axial positions from X = 10 to 

100. This value of R, corresponds to qw = I. 1542 
(when Xend = 100) and falls under the category of 
slender cylinders [25]. For a cylinder of 4 mm radius 
in air, R, = 4 implies a surface heat flux of about 462 
W m -’ and an internal energy generation rate of about 

231 kW rnm3. The axial velocity and the boundary 
layer thickness increase in the flow direction as more 
and more fluid from the free stream entrains into the 
boundary layer. The peak in the axial velocity shifts 

outward as the flow develops axially due to increasing 
drag and decreasing entrainment velocity. The 
maximum value of the boundary layer velocity at 

X = 100 is 9.1, which corresponds to a physical value 
of about 0.19 m s-’ in air. The entrainment velocity 
was observed to be a maximum near the upstream 
end and decrease in the flow direction. The thermal 
boundary layer thickness and the surface temperature 
of the cylinder increase in the flow direction. 

The steady-state profiles of the axial velocity com- 
ponent and temperature within the boundary layer 

The transient radial velocity profile at 7 = 150 and 
the axial velocity profile at r = 200 are shown in Figs. 

FIG. 3(a) 

Radius- R 

Steady-state axial velocity profiles at various X 
locations. 

Pr = 0.72 

RO = 4.0 

6 12 16 20 : 

Radius - R ====D 

FIG. 3(b). Steady-state temperature profiles at various X 
locations. 
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-0.12 ! 1 , , , , , 1 , , 
4 16 28 LO 52 64 76 88 1M) 112 1 4 

Radius-R --+ 

FIG. 4(a). Transient radial velocity profiles at various axial 
locations. 

Ro = 4.0 
a =5500 

f 
0.6 

3 

i 04 

u 
2 a2 
Y 

0 
0 
0 
0 
0 
0 
0 
0 
0 
ol I , I I , I I I , I 

4 6 8 10 12 14 16 18 20 22 24 
RADIUS-R & 

FIN;. 4(b). Transient axial velocity profiles at various axial 
locations. 

4(a) and (b), respectively, for R,, = 4 and Q = 5500. 
This value of Q corresponds to a cylinder of stainless 
steel-316 in air at about 70’C. The penetration dis- 
tance of the leading edge effect evaluated from the 
present boundary layer solution for various values of 
Q is shown in Fig. 5 (solid lines) for R0 = 4. It may be 
noted that Q = 4600 and 3700 correspond to cylinder 
material of copper and tungsten, respectively. It is 
clear from Fig. 4(a) that the entrainment velocity is 
non-zero up to X = 40 and is zero for X 2 50. This 
implies that the instantaneous location of the leading 
edge effect is between X = 40 and 50. From Fig. 5, we 
find that at z = 150 the leading edge effect is located 
at X = 42 for Q = 5500. 

When t = 200, it is clear from Fig. 4(b) that the 
axial velocity profiles for X < 80 are different from 
each other while the velocity profiles for x > 80 arc 
exactly the same as at X = 80. This implies that onc- 

dimensional conduction governs the How and associ- 

ated fields for X > 80. Again from Fig. 5, the axial 
position of the leading cdgc cffcct at 5 = 200 is 7X fol- 
Q = 5500. 

From Fig. 5, WC tind that the time required for 
the leading edge effect to reach X = 100 is 210 for 

Q = 4600. For r(, = 4 mm and R,, = 4. this cor- 
responds to a physical time of about IO s. It is also 
evident from Fig. 5 that the leading edge effect propa- 
gates faster as the thermal capacity decreases. This is 

due to the fact that the transient velocity associated 
with materials of smaller thermal capacity is higher 
since the heat tlux on the cylinder is higher. Clearly, 

for the same energy generation rate, the transient heat 
flux is higher (as the absorption is less) for smaller 
thermal capacity. 

Also shown in Fig. 5 arc the penetration distances 
of the leading edge effect (i) from the solution 01 

equation (7) (dashed lines), and (ii) by applying the 
criterion of no overshoot in the mass flow rate during 
the one-dimensional process [I41 (chain lines). It is 
clear that equations (5) -(7) predict a slower rate of 
propagation of the leading edge elkt than the actual 
value corresponding to the boundary layer solution 
for all the values of Q. It should be mentioned that 

exactly the same conclusion was drawn by earlier 
studies for a flat plate [14]. It is found that the time 
required for the leading edge effect to reach S = 100 
based upon the solution of equation (7) is 21. I. 23.X 
and 24% higher than the actual time based upon the 

boundary layer solution for Q = 5500,46(X) and 3700. 
respectively. For smaller values of X, howcvcr, these 
differences arc larger. It is worth mentioning here 
that Mollendorf and Gcbhart [9], and Mahajan and 
Gebhart [IO] also observed the actual propagation 
rate to be 20% faster than that predicted by Goldstein 

and Briggs [8] for a Flat plate. Also. the prediction of 
Goldstein and Briggs [8] is not much diffcrcnt [I41 
from that of equation (7). For a flat plate, Joshi [I41 
found that the criterion of no overshoot in the mass 
flow rate during the one-dimensional process predicts 

;I faster rate of propagation of the leading edge effect 
than that based upon equation (7). For the case of a 

cylinder. howcvcr, the reverse is true for all values of 
Q. as is evident from the results in Fig. 5. 

The transient local Nusselt number is shown in 
Figs. 6(a) and (b) for Q = 3700 and 5500. respcctivcly, 
when R,, = 4. It can bc seen that the Nusselt number 
profile at any instant is made up of two parts, namely, 
(i) the part near the upstream end (small X-values). 
and (ii) the part near the downstream end (large X- 
values) where the Nusselt number is independent of 
X. While part (i) corresponds to the region of the 
cylinder surface through which the leading edge effect 
has already passed, part (ii) corresponds to the region 
whcrc this effect has yet to reach and the onc-dimen- 
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FIG. 5. Penetration distance of leading edge effect for R, = 4. 
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FIG. 6(a). Local Nusselt number for R,, = 4 and Q = 3700. 

sional conduction regime prevails as is evident from 
the constant value of the Nusselt number. The patch- 
ing point of the two parts denotes the instantaneous 
location of the leading edge effect. For example, for 

I I I I I , I I , 

0. 10 20 30 40 50 60 70 80 90 100 

AXIS-X __j 

FIG. 6(b). Local Nusselt number for R0 = 4 and Q = 5500. 

Q = 3700 at z = 100, this point lies around X = 25 
and the actual value of the penetration distance at this 
instant from Fig. 5 is 26. Moreover, it may be noted 
that this point moves downstream with time. 
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FIG. 7. Transient surface temperature at various instants. 

It is also evident from Fig. 6 that the Nusselt num- 
ber at any location passes through a minimum before 
reaching the steady-state value. A closer look at Fig. 

6 reveals that the heat transfer coefficient at any 
instant and at any location is higher for smaller values 
of Q. owing to higher transient heat flux. Similar 
results were also obtained for other values of Q. 

The physical value of the steady-state heat transfer 
coefficient at X = 100 is about 8.1 W m ’ Km’ for a 

cylinder of 4 mm radius in air. 
The transient surface temperature evolution is 

shown in Fig. 7 for R, = 4 and Q = 5500 (solid lines). 
For this case the time required to reach steady state 
is around 5 = IO’ which corresponds to a physical 
time of about 4800 s in air for a cylinder of 4 mm 

radius. For the same R,, and for other values of Q, the 
temperature evolution was found to be similar but at 
a slightly faster rate. We may also mention that no 
overshoot either in the boundary layer temperature 
or velocity was found in the entire parameter range 
reported here. However, an overshoot in the tem- 

perature as well as the velocity profiles is observed 
when Q = 0 or small. The absence of an overshoot 
for the large values of Q is due to the fact that the 

ratio of the heat capacity of the solid to that of air is 
very high. For example, for stainless steel-316 and air. 
this ratio is about 3000. Thus, for large values of Q, 
the temperature rise of the cylinder is too slow for the 
thermal capacity of the boundary layer fluid and the 
time for boundary layer development to produce any 

temperature or velocity overshoot. 
Figure 8 shows the transient evolution of the 

Nusselt number at X = 100 from the boundary layer 
(solid line) and the one-dimensional (dashed line) 
solutions for R, = 4 and Q = 3700. The one-dimen- 
sional solution departs from the boundary layer solu- 
tion at r z 194. From Fig. 5, we find that the lead- 
ing edge effect for this case arrives at X = 100 when 
T = 194. This is an indirect validation for the value of 
e = 0.01 used in equation (8). The minimum value of 
the Nusselt number occurs, however, at 5 = 230. 
Table 4 shows the minimum values of the Nusselt 
number at X = 100, the time when this minimum 

1 
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FIG. 9. Steady-state axial velocity and temperature profiles 
for R,, = 0.5. 

occurs, and the time when the leading edge effect 
reaches X = 100 for R,, = 4 and various values of Q. 

Clearly, the minimum Nusselt number occurs well 
after the arrival of the leading edge effect. Also, the 
higher the heat capacity Q. the lower is the minimum 

Nusselt number. 
Results for two more values of Ro, namely, 0.5 and 

1.5, were also computed. For a given fluid, diffcrcnt 
values of R,, correspond to a different radius of the 

cylinder and/or a different value of the heat flux y”. 
The steady-state profiles of axial velocity component 
and temperature within the boundary layer for 
R, = 0.5 are shown in Fig. 9. This value of R,, cor- 

Table 4. Local Nusselt number for R, = 4 and Pr = 0.72 
.~~ ~~~~~ 

(NGGr! J),“,,, 5 when Nu,,,,,, t when L.E.E. 

Q atX= 100 occurs crosses x = 100 

5500 0.1505 260 228 
4600 0. I528 245 210 
3700 0.1558 230 194 
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responds to a value of q, = 0.1443 (when Xend = 100) 
and falls under the category of wires [25]. While the 
boundary layer thickness increases with a reduction 
in R,, the boundary layer velocity decreases as the 
cylinder gets thinner. A reduction in the cylinder 
radius leads to a reduction in the surface area per unit 
length and hence in the total energy generation rate. 
These in effect reduce the boundary layer temperature 
and buoyancy force leading to a reduction in the vel- 
ocity within the boundary layer. The steady-state sur- 
face temperature for R, = 0.5 (dashed line) is shown 
in Fig. 7. From this figure, it is clear that the thinner 
the cylinder, the more uniform is the surface tem- 
perature. The reason for this can be explained as 
follows. 

The thinner the cylinder, the thicker the boundary 
layer and hence the greater the quantity of fluid 
exchanging heat. Also, the thinner the cylinder, the 
smaller the total energy generated. Since the total 
energy to be convected away from the cylinder is 
smaller while the fluid available for heat exchange is 
greater, the surface temperature tends to be more 
uniform. 

Also shown in Fig. 7 is the transient evolution of 
the surface temperature for R, = 0.5 and Q = 690. 
This value of Q corresponds to a cylinder of stainless 
steel-3 16 in air at about 70°C. This is also the case for 
Q = 2060 when R, = 1.5. The surface temperature 
evolution for R,, = 1.5 and Q = 2060 is also similar 
except that its evolution rate lies between the two cases 
reported in Fig. 7. The penetration distance of the 
leading edge effect from the boundary layer and 
one-dimensional analyses are shown in Fig. 10 for 
R, = 0.5 and Q = 690. The dimensionless time re- 
quired for the leading edge effect to reach X = 100 is 
125. This corresponds to a physical time of about 6 s 
for a cylinder of 1 mm diameter in air. Similarly, 

T 
X 

100 200 

-----3x 

FIG. 10. Penetration distance of leading edge elect for 
R, = 0.5. 

from the results for R, = 1.5 and Q = 2060, the physi- 
cal time required for the leading edge effect to reach 
X = 100 is found to be 8.2 s for a cylinder of 3 mm 
diameter in air. Comparing Figs. 5 and 10, we find 
that for the same heat flux value and the same cylinder 
material, the leading edge effect propagates faster for 
a thinner cylinder. Despite the fact that the axial vel- 
ocity component associated with a thinner cylinder is 
smaller, the transient evolution of the boundary layer 
velocity is faster than that for thicker cylinders. 

Similar to the observation made for the results in 
Fig. 5, the propagation rates of the leading edge effect 
estimated from the one-dimensional analyses are 
slower than the real one for R, = 0.5. The time 
required for the leading edge effect to reach X = 100 
based upon equation (7) is 24% larger than the real 
one. Moreover, the criterion of no overshoot in the 
mass flow rate during the one-dimensional process 
also predicts a slower propagation rate than that from 
equation (7), which is contrary to the observation 
made for a flat plate by Joshi f14f. Similar conclusions 
also hold for R, = 1.5. 

The evolution of the transient Nusselt number 
for R,) = 1.5 and 0.5 is similar to that for R, = 4 
shown in Fig. 6, except for a faster rate of evolution 
and a higher Nusselt number as R. decreases. For 
example, for R, = I .5 and 0.5, the physical values of 
heat transfer coefficient at X = 100 are 11.4 and 
20.4 W mm2 K-‘, respectively, for cylinders of radii 
1.5 and 0.5 mm. 

The transient values of average Nusselt number, 
Nu, averaged over the length of the cylinder, are 
shown in Figs. 1 l(a) and (b) for various values of Q 
and R,. Similar to the local Nusselt number, NU passes 
through a minimum for all values of R, and Q. For the 
same heat flux and cylinder material, the thinner the 
cylinder, the earlier this minimum appears. Also, for the 
same radius r0 and heat flux, the smaller the heat 
capacity of the material, the earlier this minimum 
appears. For R, = 4 and Q = 5500, Nu reaches a mini- 
mum value of about 53% of the steady-state value. 
However, as the heat capacity or cylinder radius 
decreases. this minimum value increases. 

Fro 1 I (a). Transient average Nusselt number for R, = 4. 
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FIG. I I(b). Transient average Nusselt number for R,, = 0.5 
and i.5. 

Figure 12 shows the transient extension of the 
boundary layer, R,, at the downstream location 
X = 100 for various values of R,, and Q. The edge of 
the boundary layer was assumed to be the location 
where the axial velocity component II reached a value 
of 0.001. Clearly, the thinner the cylinder, the thicker 

the steady-state boundary layer. For example, for a 
cylinder of 4 mm radius in air. the steady-state bound- 
ary layer thickness is 93 mm, while for a 0.5 mm radius 
cylinder, it is I3 1 mm for all cylinder materials and 
heat fluxes investigated. 

The transient boundary layer thickness exceeds its 
steady-state value for all the values of R,, and Q. 
For example. for R,, = 4 and Q = 5500, the transient 

boundary layer thickness exceeds the steady-state 
value by about 24%. This value decreases as either 
the heat capacity or the radius decreases. Another 
observation is that this peak appears well after the 
passage of the leading edge effect. 

-1: 

- I2 

-12 

.li 

FIG. 12. Transient boundary layer thickness 

5. CONCLUSIONS 

The transient boundary layer equations for free 
convection adjacent to a heat generating vertical cyl- 

inder have been solved numerically. The following 
conclusions are drawn : 

(a) The rate of propagation of the leading edge 

effect for cylinders, predicted by the one-dimensional 
conduction equations and equation (7), is found to 
bc slower than the actual value predicted by the 
boundary layer equations. 

(b) The criterion of no overshoot in the mass flow 

rate during the one-dimensional process predicts a 
slower rate of propagation of the leading edge effect 

than that from equation (7) for the case of a cylinder, 
while the reverse is true for a flat plate [14]. 

(c) The rate of propagation of the leading edge 

effect decreases as the radius and thermal capactty of 
the cylinder increase, and as the heat flux decreases. 

(d) The local Nussclt number passes through a 

minimum during the transient for all values of the 

cylinder radius, thermal capacity, and heat flux. 
Similarly, the average Nusselt number also passes 
through a minimum. The latter reaches a minimum 
value as low as 53% of its steady-state value for the 
largest R,, and Q considered. The minimum value 
increases as either the heat capacity or the cylinder 
radius decreases, and is found to occur well after the 

leading edge effect crosses that axial position. 
(e) During the transient, the boundary layer thick- 

ness exceeds its steady-state value. This value is about 
1.24 times the steady-state value for the largest K,, 
considered, and decreases with either the heat capacity 
or the cylinder radius. Moreover, the peak value 
appears long after the passage of the leading cdgc 

effect. 
(f) The steady surface temperature distribution of 

the cylinder for any R,, is found to vary as T. = hX”, 
where the values of N and h are presented for R,, 

varying from 0.5 to 50. 
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CONVECTION NATURELLE VARIABLE SUR UN CYLINDRE VERTICAL CHAUFFE 

R&sum&On presente une solution numtrique pour la convection naturelle variable sur des cylindres 
verticaux chauffes, de capacites thermiques et de rayons differents. Une technique de differences fmies 
entierement implicite est utilisee pour resoudre le systtme d’bquations non lineaire. On Porte une con- 
sideration particuliere sur l’effet de la vitesse de propagation du bord d’attaque. On trouve que cette vitesse, 
predite par la solution de conduction monodimensionnelle, est plus lente que celle resultant de la solution 
de couche limite. Elle augmente quand le rayon et la capacitt thermique diminuent et quand le flux 
thermique a la surface augmente. L’epaisseur de couche limite variable excede sa valeur stationnaire tandis 
que le coefficient moyen de transfert atteint un minimum allant jusqu’a 53% de sa valeur stationnaire pour 
la plus grande valeur ttudiee du nombre de Grashof. Un accord excellent est obtenu avec les donnees 
experimentales du regime stationnaire ainsi qu’avec les rtsultats thtoriques connus en monodimensionnel. 

INSTATIONARE NATURLICHE KONVEKTION OBERHALB EINER VERTIKALEN 
ZYLINDRISCHEN WARMEQUELLE 

Zusammenfassung-Fur die instationlre natiirliche Konvektion oberhalb eines vertikalen war- 
meerzeugenden Zylinders mit unterschiedlichen Wirmekapazitaten und Radien werden numerische 
Ldsungen angegeben. Fur die Liisung des nichtlinearen Gleichungssystems wird ein implizites Finite- 
Differenzen-Verfahren verwendet. Der Ausbreitungsgeschwindigkeit des Anstriimeffektes wird besondere 
Aufmerksamkeit gewidmet. Es zeigt sich, da13 die durch eine eindimensionale Warmeleitungsgleichung 
vorhergesagte Geschwindigkeit geringer ist als die durch die Grenzschichttheorie vorhergesagte. AuBerdem 
wachst sie mit abnehmenden Werten von Radius und WarmekapazitHt des Zylinders, aber such durch 
Erhiihung der Warmestromdichte. Die Dicke der instationaren Grenzschicht ist grliI3er als im stationaren 
Fall, wogegen der instationare mittlere Warmeiibergangskoeffizient ein Minimum erreicht, welches bei der 
grdBten verwendeten Grashof-ZahlS3% des stationlren Wertes betrlgt. Die Ubereinstimmung mit friiher 
gemessenen Werten fiir den stationiren Fall und such mit theoretischen Ergebnissen fur den ein- 

dimensionalen Fall sind ausgezeichnet. 
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HECTAJJWOHAPHAX ECTECTBEHHAX KOHBEKqMR Y TEWIOBbI~EJMIO~ErO 
BEPTkiKAJIbHOTO ~HJIMHAPA 

hHOT~lUln-flpCnCTaBJI’ZH0 SkiCneHtIOC peIIIeHIlC 3allaYH HCCTa4HOHapHOfi eCTeCTBeHHOti KOHBeKUIiEi y 

Te"JIOBbI~enF,,OUHx BCpTk,Ka.ilbHbIx ~WWlHnpOB c pa3JIH',HbIMH panHyCaMH r( TeMnepaTypaMlr. Henu- 
H&Ha% CACTeMa ypaBHeHEiii peIIIat!TCK HeIlBHbIM MeTOLlOM KOHe'IHbIX pa3HOCTeii. Oco6oe BHUMaHLle 

o6pamaeTca Ha UHTCHCHBHOCTb pacnpocTpaHeHAa s+.$ecTa nepentieii KPOMKH. HafineHo, 'IT0 3HaSeHHe 

BH*~HCABH~CTH, nony4eHHoe peuIeHseM OnHOMepHOrO ypaBHeHW Te~nOIIpOBOLIHOCTH, MeHbIIle 3HaSe- 

HBR,OIIpe,.,enReMOrO 83 peIlIeHHfl IlOrpaHAYHOrO CnO%KpoMe TOFO,HHTeHCUBHOCTb paCTeTC yMeHbI"e- 

HlfeM panL,yCa H TeIUIOeMKOCTA IWl,IESHnpa II C yBCnI4’IeHIiCM TeIUIOBOrO IIOTOKa Ha IIOBC,,XHOCTH. 

IlaPneHo,rTo Tonwitia HecTaueoHapHoro norpaHwmor0 cnox npeebmaeT cTausoeapHoe 3HaqeHiie,a 

3HaSemie HecTawioHapHoro ycpenHeHHor0 K03+$wneHTa TennonepeHoca AocTHraeT MmmdyMa, coc- 

Tammo~ero 53% cTaueoHapHor0 3HaSeHm nm bfaKcm4anbHoro MonH~HusipoeaHHoro wicna rpac- 

ro$a. llonyreH0 xoporuee cornawe c npenbinymim 3KCIIepAMeHTaJIbHbIMI1 CTaUUOHapHbIMIi 

AaHHbIMA, a TBKxe C OL,HOMCPHbIMA TeOPCTA’ICCKHMki pe3ynbTaTaMH. 


