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Abstract—A numerical solution for the transient natural convection over heat generating vertical cylinders
of various thermal capacities and radii is presented. A fully implicit finite difference technique is used to
solve the non-linear set of equations. The rate of propagation of the leading edge effect is given special
consideration. It is found that this rate, predicted by the one-dimensional conduction solution, is slower
than that resulting from the boundary layer solution. Also, it increases as the radius and thermal capacity
of the cylinder decrease, and as the surface heat flux increases. The transient boundary layer thickness is
found to exceed its steady-state value while the transient average heat transfer coefficient is found to reach
a minimum, as low as 53% of its steady-state value for the highest value of the modified Grashof number
studied. Excellent agreement with previous experimental steady-state data as well as with one-dimensional
theoretical results is obtained.

1. INTRODUCTION

IN THE event of pump or power failure, the heat energy
from the nuclear reactor is removed solely by natural
convection. Following sudden stoppage of the pump,
it takes some time for the natural convection to set
in. During this period, heat is transferred mainly by
conduction, and it is known that the heat transfer
coefficient passes through a minimum before reaching
the final steady-state value. The history of the tran-
sient heat transfer coefficient and the time required
for the natural convection flow to set in are essential
for reactor calculations.

Illingworth [1] initiated such a transient analysis for
an infinite flat plate brought suddenly to an isothermal
temperature different from the surrounding, otherwise
quiescent, fluid. He presented the velocity and tem-
perature solutions for a Prandtl number of unity. For
such a case, no leading edge effect prevails and heat
is transferred purely by one-dimensional conduction.
However, for real geometries of finite length, a leading
edge effect does exist and the transient one-dimen-
sional analysis is valid, for any axial location, only
until the leading edge effect reaches that location. This
effect is marked by the entrainment of ambient fluid
and only boundary layer solutions are valid thereafter.
Schetz and Eichhorn [2], and Menold and Yang [3]
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studied such one-dimensional transients for time-
varying surface temperatures and heat flux boundary
conditions over a flat plate. These analyses, however,
do not give the duration of the one-dimensional pro-
cess that collapses upon the arrival of the leading edge
effect.

Siegel [4] used the Karman-Pohlhausen integral
method to solve the momentum and energy boundary
layer equations for a semi-infinite flat plate. He
analyzed the problem for a step change both in surface
temperature and in heat flux, and is the first to point
out the effect of leading edge and time duration of the
one-dimensional conduction process. Subsequently,
Goldstein and Eckert [5] reported experimental
results for a flat plate supplied with sudden heat input,
and verified the predictions of Siegel [4]. Gebhart [6]
analyzed the case of a semi-infinite flat plate with
thermal capacity using the integral technique, and
obtained results in close agreement with the exper-
imental data of Gebhart and Adams [7]. Goldstein
and Briggs [8] presented solutions for predicting the
duration of the one-dimensional process from the
results of an infinite plate. Their analysis includes
various boundary conditions such as a step change in
surface temperature, surface heat flux, plates of vari-
ous thermal capacity and fluids of various Prandt]
numbers.

Mollendorf and Gebhart [9], and Mahajan and
Gebhart [10] observed the leading edge effect propa-
gation and found that this effect reaches any axial
position about 20% faster than that predicted by
Goldstein and Briggs [8]. Yang [11] and Nanbu [12]
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N normalized local heat flux,
—(kjg")(@0t/on),—,,

0 thermal capacity parameter

r radial coordinate measured from the
centerline of the cylinder

o radius of the cylinder

R dimensionless radial coordinate

R, fourth root of the modified Grashof
number with r, as length
R, edge of the boundary layer

AR grid size in the radial direction

t temperature of the fluid within the
boundary layer

T dimensionless temperature

u, v velocity components in the x-,
r-directions, respectively

dimensionless velocity components in the
X-, R-directions, respectively

NOMENCLATURE
a, b arbitrary constants Ry axial coordinate measured upward
Bi Biot modulus X dimensionless axial coordinate
¢ thermal capacity of the cylinder per unit Xa  penetration distance of the leading edge
surface area effect based on the present boundary
e small number for determining the arrival layer solution
of the leading edge effect Xgr  penetration distance of the leading edge
g acceleration due to gravity effect based on the Brown and Riley
Gr.  modified local Grashof number, criterion
(gBq"x*[kv?) Xss  penetration distance of the leading edge
Gr,  modified Grashof number at x = x4 effect based on the Goldstein and
h local heat transfer coefficient Briggs criterion
k thermal conductivity of the fluid X penetration distance of the leading edge
k.. thermal conductivity of the cylinder effect based on Joshi’s criterion of no
material overshoot in the mass flow rate
L.E.E. leading edge effect AX  grid size in the axial direction.
m iteration index
Nu, local Nusselt number, hx/k Greek symbols
Pr Prandtl number of the fluid o thermal diffusivity of the fluid
q" instantaneous energy generation rate p coefficient of volumetric expansion of the
within the cylinder per unit surface fluid
area & small number for test of convergence
q" volumetric energy generation rate n pscudo-similarity variable,

(7 =rd)[2r){gBle,— 1, ) [Axviy 1
Hw R(I(SX) b

v kinematic viscosity of the fluid

& stretched axial coordinate,
2devigh(t,—t, )rd "

T dimensionless time

T time

At step size in time

/s dummy variable.

Subscripts and superscript

c value at the centerline of the
cylinder

s value at the cylinder surface

s$ value at steady state

e value in the free-stream

end value at downstream end

average value from x = 0 to x .-

analyzed the transient boundary layer equations and
concluded that the departure from the one-dimen-
sional process occurs at a critical time when an essen-
tial singularity in the governing equations appears.
Brown and Riley [13] pointed out that this critical
time resulted in a leading edge propagation criterion
different from that proposed by Goldstein and Briggs
[8]. Recently Joshi [14] compared four different
propagation criteria with the experimental results of
Mollendorf and Gebhart [9], and Mahajan and
Gebhart {10]. He concluded that the propagation dis-
tance based on the criterion of ‘no overshoot in the
mass flow rate during the one-dimensional process’
yields the fastest propagation amongst all the four

criteria. This was found to be in close agreement with
the experiments in water.

Hellums and Churchill {15] solved the unsteady
boundary layer equations using a finite difference
method for a semi-infinite isothermal flat plate in air,
while Sammakia et al. [16] analyzed the case of a flat
plate with constant heat flux and finite heat capacity.
The latter included the effect of radiation in their
analysis and compared their numerical results with
the experimental data in air. They concluded that the
effect of radiation is negligible at high heat flux levels.
Later, Sammakia et al. [17] presented numerical and
experimental results of natural convection adjacent to
a vertical plate of finite heat capacity in water. Carey
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[18, 19] analyzed the flat plate in high Prandtl number
fluid with zero and finite thermal capacity, and con-
firmed the existence of a dual layer structure during the
entire transient process. He also found that the time
to reach steady state was proportional to Prandtl
number raised to the power 3/5.

Joshi and Gebhart [20] analyzed the one-dimen-
sional transient process adjacent to a flat plate of finite
thermal capacity subjected to sudden changes in heat
flux and temperature in water at its density extremum.
More recently Joshi and Gebhart [21] studied ana-
lytically and experimentally the case of a flat plate
subjected to a sudden change of heating rate. During
this process of switching over from one initial steady
state to another, periodic disturbances were observed
to propagate downstream from the leading edge.
These disturbances lead to transient transition to tur-
bulence before relaminarization takes place, and this
transition increases the heat transfer effectiveness.
Gokhle [22] analyzed the case of transient natural
convection adjacent to an isothermal flat plate, with
heat sources in air and water, by the finite difference
method. The heat source was taken to be a function
of the local temperature gradient.

While the flat plate has been studied in detail, the
cylinder, which is the geometry for heat generating
fuel rods in a reactor, has been given little attention.
It is well known that the boundary layer over a slender
cylinder is thicker than that over a flat plate. Hence
the results of flat plate analysis do not apply directly
to slender cylinders and they deserve a separate study.
Goldstein and Briggs [8] carried out a one-dimen-
sional study of transient natural convection from cyl-
inders. They presented analytical solutions for the
duration of the one-dimensional process from the con-
duction analysis for infinite cylinders. Subsequently,
Dring and Gebhart [23] presented experimental results
for the transient average temperature of Nichrome
wires in silicone oils and in air. They also compared
their experimental results with the pure conduction
results, and with a simplified quasistatic theory that
yields a simple exponential solution for the tem-
perature response. The quasistatic theory failed, how-
ever, for silicone fluids. Even for air, the conduction
solution was found to be better than that predicted
by this theory.

Some steady-state analyses for a cylinder also exist.
Amongst them, Minkowycz and Sparrow [24]
obtained the steady boundary layer velocity and tem-
perature profiles for isothermal cylinders of various
radii placed in air using the local non-similarity
method. Nagendra et al. [25] carried out a numerical
study of steady boundary layer equations for cylinders
subjected to uniform heat flux and compared their
predictions with the experimental results of their
earlier study in water. They found that the differ-
ence of heat transfer coefficients between the cases of
isothermal and constant heat flux cylinders is about
6%. Chen and Yuh [26] studied steady heat and mass
transfer processes near cylinders with uniform wall
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heat and mass fluxes, and wall temperature numeri-
cally. Their study covered a wide range of radii and
Prandtl numbers. Subsequently Chen [27] studied the
power law variation of wall heat flux for cylinders in
steady natural convection flow for various Prandtl
numbers. More recently Lee et al. [28] solved the
steady boundary layer equations using the non-similar
transformation followed by the finite difference
method with the spline interpolation technique. They
considered the wall temperature varying as a function
of the axial coordinate.

Herein we present a numerical solution of the tran-
sient natural convection adjacent to heat generating,
vertical cylindrical fuel rods of various thermal
capacities, radii and surface heat flux. We compare
the boundary layer solution with the one-dimensional
conduction solution, and compute the leading edge
propagation time as proposed by Brown and Riley
[13], and by Joshi [14]. The accuracy of the numerical
calculations is assessed by comparison with the
steady-state local non-similar results of Minkowycz
and Sparrow [24], the experimental and analytical
results of Nagendra et al. [25], and the one-dimen-
sional results of Goldstein and Briggs [8] obtained
through Laplace transforms.

2. ANALYSIS

The transient natural convection boundary layer
equations adjacent to a heat generating, vertical cyl-
inder (see inset of Fig. 10) for laminar, constant prop-
erty, viscous flow with Boussinesq approximation are
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fourth root of the modified Grashof number.

The boundary conditions in equation (4) imply that
the temperature of the cylinder has been lumped in
the radial direction. For conduction through a solid
cylinder of radius r, internal energy generation rate
4", thermal conductivity k,. and heat transfer
coeflicient 4, it is easy to show that

(t.—1) - hry
(t,—t,) 2k,

— Dy
— Di.

For air as the fluid and Cr—Ni steel as the cylinder
material, the value of Biis found to be 1.3 x 107 * for

o=4 at X =100. For smaller values of R, such
as 0.5, Biis as low as 4 x 107* thus justifying our
assumption about the radially invariant temperature
of the cylinder.

Though the temperature of the cylinder varies in
the axial direction, the axial heat conduction has been
neglected. The steady-state surface temperature of the
cylinder has been found to vary as T, = bX“, where
the constants ¢ and b vary with R,. The axial heat
flux at any location X can be shown to be

dr, Ak o
kl“a = “‘abq (/\ )X

and the radial heat flux in the fluid surrounding the

cylinder is
bh {q"
ht=1,) = o <qkr"> X,
0

The ratio of the total axial heat transfer to the radial
heat transfer can be shown to be —(r,/L)(R,/4)(a/X)/
Bi. For Ry =4 and at X = 100, this ratio is found
to be about —0.05. For smaller values of R, such
as 0.5, this ratio is as small as —1.4x107%. Thus
axial conduction is negligible. Also, the effect of sur-
face radiation can be neglected for a highly polished
surface.

The one-dimensional conduction forms of equa-
tions (2) and (3) are

cU 1 0 oU
=T+ — | R 5
& TR ER( m) (5
eT 11 ¢ ¢T
o " Pr RaR<Rﬁe> ©)

subject to the same initial and boundary conditions
(in the radial direction) as in equations (4) for U and
T. The penetration distance of the leading edge effect
at any instant 7 as proposed by Brown and Riley [13]
is

Yor(7) = L max [U (), R)] dy (N
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where the velocity U(z, R) is calculated from the
solution of equations (5) and (6). The actual pen-
etration distance from the present boundary layer
solution, estimated by the appearance oi the cross
stream velocity component, that is, by

V(LR X)V(RX) 2z e (8)

is referred to as Xy, . For the results presented here, ¢
was taken to be 0.0i. The penetration distance
obtained by applying the criterion of no overshoot in
the mass flow rate during the one-dimensional
process, as proposed by Joshi [14], is

R R

XY, = J(' "UL(R.X)RAR > JF UG, R)RAR. (9)

3. SOLUTION

The governing boundary layer equations (1)—(3)
subject to the boundary and initial conditions (4) are
solved by a fully implicit finite difference marching
technique. This technique is a modified form of the
one described by Hornbeck [29] for flow through a
circular pipe. While marching in the axial direction,
the nonlinearity of the inertial terms and the inter-
linkage of momentum and energy equations are
retained. Thus the finite difference form of equations
(1)-(4) are solved iteratively by the Thomas Algo-
rithm for tridiagonal equations [29] at any axial
position. This iterative axial marching is repeated at
each time step. Since the method is fully implicit,
there is no constraint on the time step due to stability
considerations.

3.1. Computational details

Variable grid sizes were used in the axial and radial
directions. Figure 1(a) shows the steady-state values
of the surface temperature T,(X) (solid line) and the
maximum value of the axial velocity component U,
(dashed line) for NX = 60 and 120, where NX is
the number of grids in the X-direction. A maximum
difference of 2.6% is observed in U, near the leading
edge and only 0.6% near the downstream end. The
corresponding differences in 7,(X) are 1.1 and 0.2%.
Thus, NX is taken to be 60 for all the results presented
here. Grid size {AX) in the marching direction was
taken as 0.2 near the upstream leading edge, and was
increased to 2.0 far away from the leading edge. The
adequate number of grid points in the radial direction,
also determined in a similar manner, was found to
increase with decreasing cylinder radius. The number
of grids in the R-direction was 171 for a cylinder of
4 < R, < 50 but it was required to increase it to 551
for R, = 0.5. Also, the smaller the value of R, the
finer was the radial grid size near the surface of the
cylinder in order to take care of increasing curvature
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FiG. 1(a). Steady-state temperature and maximum value of
axial velocity.

effects. The radial grid size near the cylinder for Ry, = 4
was 0.1, This was reduced to 0.0125 for R, = 0.5.
The step size in time, Ar, was steadily increased
from a small initial value. Figure 1(b) shows the tran-
sient Nusselt number and dimensionless shear stress
at X = 100 for two different At ranges. Values of At
in the first range (solid lines) are four times those in
the second range (solid circles). The two results are
almost indistinguishable for 7 > 4, that is, for almost
the entire duration of the transient. It may be pointed
out that Ingham [30] could not get a Az-independent
heat transfer coefficient for the case of a flat plate
when its temperature is suddenly increased from that
of the surrounding fluid. In the present study, we did
not observe such a phenomenon in any of the cases

1297

analyzed. Typical values of At used in the study are
At=0l1for0<t<,At=1forl <1<10,At =5
for 10 < 7 < 300, At = 20 for 300 < 7 < 400, At = 50
for 400 < 7 < 1000, Az = 200 for 1000 < t < 5000,
and At = 1000 for 7 > 5000.

To terminate the iteration of the linked finite differ-
ence form of equations (1)—(3) at any axial location X
and time 7, the axial velocity distribution between
two consecutive iterations satisfied the criterion

[1-U™X,R,7)/JU™ "(X,R,1)] <¢ forallR > R,

where m is the iteration index. The value of & was
taken to be 1077 for the results presented here. The
number of iterations was around 11 for X-locations
away from the leading edge and was as high as 30
near the leading edge. Also, these numbers were found
to increase with increasing cylinder radius. A relax-
ation factor of 0.6 was necessary for momentum and
energy equations to converge.

3.2. Accuracy

In order to check our numerical procedure, we com-
pared our steady-state finite difference solutions for
isothermal cylinders with the local non-similar solu-
tions of Minkowycz and Sparrow [24]. Figure 2 shows
this comparison of boundary layer temperature for
air with Pr = 0.733 and for two values of the stretched
axial coordinate ¢ = 0.5 and 2.0. There is an excellent
match between the two solutions. Also, we compared
our steady average heat transfer coefficient with the
correlations proposed by Nagendra et al. [25]. Table
1 shows this comparison for X = 100 and Pr = 0.72.
This value of X corresponds to a local Grashof num-
ber of 10%. A maximum deviation of 10% is observed.
Noting that the correlations of Nagendra et al. [25]
were based on the experimental data for water and
not for air (Pr=10.72), and that the experimental
data are from one source only, the agreement is quite
satisfactory.

As already mentioned, the steady-state surface tem-

aT=1 for0<T 20

aT=20 for20<T <300
aT =25 for 300<T< 400
AT=100for 400<T <1000
aT=400for1000<T< 5000
aT=103for 5000<T<10°

Nux /er 4—-)

e aT=025for0<T < 20
eT=5for 20 <T < 400
aT=25for 400<T < 1000
» T =100for 1000<T< 5000
aT=500for5000<T<10°>  [10

F1G. 1(b). Transient Nusselt number and shear stress at X = 100.
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FiG. 2. Boundary layer temperature for isothermal cylinders.
Table 1. Comparison of average heat transfer coefficient
Nu{Gr,
Nagendra Deviation
R, New(Xena = 100) Present et al. [25] (%)
0.5 0.1443 0.745 0.710 S
(wire)
1.5 0.4328 0.440 0.480 8
(slender cylinder)
4.0 1.1542 0.320 0.357 10
(slender cylinder)
Table 2. Values of ¢ and b in T, = bX*
a
Nagendra
R, Ho(Xeng = 100) Present et al. [25) b (Present)
0.5 0.1443 0.0875 0.04 0.9653
(wire)
[.5 0.4328 0.1288 0.138 1.4351
(slender cylinder)
4.0 1.1542 0.1631 0.138 1.7363
(slender cylinder)
15.0 4.3281 0.1941 0.2 1.8922
(short cylinder)
50.0 14.427 0.2012 0.2 1.9574

(short cylinder)

perature of the cylinder is found to vary as T, = bX*,
where the constants ¢ and b vary with R,. The values
of @ and b for various values of R, and the cor-
responding values of 17, = Ry(5X) "% at X = 100 are
presented in Table 2. Also included in this table is the
value of ¢ from Nagendra et al. [25]. Tt is expected that
the values of constant b and exponent a be continnous
functions of R,. However, only three discrete values
are given in Nagendra et al. [25]. For two slender
cylinders of radii R, = 1.5 and 4.0, the values of
exponent « are 0.1288 and 0.1631, respectively. These

values of a are on either side of the single value 0.138
given by Nagendra et al. [25]. For higher values of R,
(short cylinders), the value of a approaches that for
the flat plate, namely 0.2, in the present study as well
as in Nagendra et al. [25]. It is found that the smaller
the radius, the more uniform is the surface tem-
perature of the cylinder.

For Ry =4, Pr=1 and Q = 0, the transient vel-
ocity values and the penetration distance Xq of the
leading edge effect obtained from the solution of equa-
tions (5) and (6) at time t = 16 x 10* are shown in
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Table 3. Values of U and Xgg for Pr=1,Q =0and Ry =4 at t = 16 x 10*

U/(2nR,7) Xop/(2nRyT%)

Percentage Percentage

Goldstein and difference Goldstein and difference
r/ry  Present Briggs [8] (%) Present Briggs [8] (%)
2 1.2080 1.2088 0.07 0.6426 0.6393 0.51
5 2.7785 2.7781 0.01 1.4689 1.4602 0.60
1S 4.4652 4.4646 0.0t 2.2988 2.2845 0.63
25 49993 4.9991 0.004 2.4952 2.4791 0.65
30 51074 5.1074 0.00 2.5077 24911 0.67
35 51510 5.1513 0.006 2.4870 2.4700 0.69
40  5.1464 5.1469 0.01 2.4426 2.4255 0.71
70 4.5681 4.4698 0.04 1.9492 1.9332 0.83
0.08 0.6903 0.6818 1.24

150 2.1588 2.1606

Table 3. Here

Xoa(t, R) = f UG, R dy.

Also presented in Table 3 are the closed form ana-
lytical solutions of Goldstein and Briggs [8] obtained
through Laplace transforms. The present numerical
values of U match very well with the analytical values ;
the maximum difference being only 0.08%. The values
of penetration distance Xgg also match well with a
maximum difference of 1.2%. The grid size in the
radial direction for the numerical results in Table 3
was increased from 0.25 near the cylinder surface to
5.0 away from the cylinder. It may be pointed out that
for the boundary layer solutions reported here for
R, =4, the corresponding values of AR are much
smaller, being only 0.1 and 1.0, respectively.

4. RESULTS AND DISCUSSION

The steady-state profiles of the axial velocity com-
ponent and temperature within the boundary layer

10
Pr =Q72
sl Ro = 4.0
G_
4._
oo}
' ” X=
S 100
s of 20
S of 80
of 70
of 60
0 0
o 40
of 30
0
20
0
O L 1 L T . 10
4 8 12 16 20 24
Radius- R

are shown in Figs. 3(a) and (b) for R,=4 and
Pr =0.72 at various axial positions from X = 10 to
100. This value of R, corresponds to 7, = 1.1542
(when X4 = 100) and falls under the category of
slender cylinders [25]. For a cylinder of 4 mm radius
in air, R, = 4 implies a surface heat flux of about 462
W m~?and an internal energy generation rate of about
231 kW m~’. The axial velocity and the boundary
layer thickness increase in the flow direction as more
and more fluid from the free stream entrains into the
boundary layer. The peak in the axial velocity shifts
outward as the flow develops axially due to increasing
drag and decreasing entrainment velocity. The
maximum value of the boundary layer velocity at
X = 1001s 9.1, which corresponds to a physical value
of about 0.19 m s~' in air. The entrainment velocity
was observed to be a maximum near the upstream
end and decrease in the flow direction. The thermal
boundary layer thickness and the surface temperature
of the cylinder increase in the flow direction.

The transient radial velocity profile at T = 150 and
the axial velocity profile at T = 200 are shown in Figs.

Temperature ~ T =>

0 " N 1 "
4 8 12 16 20 24

Radius- R —=%>

FiG. 3(a). Steady-state axial velocity profiles at various X  FiG. 3(b). Steady-state temperature profiles at various X

locations.

locations.
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FiG. 4(b). Trausient axial velocity profiles at various axial
locations.

4 6 8 10

4(a) and (b), respectively, for R, = 4 and Q = 5500.
This value of Q corresponds to a cylinder of stainless
steel-316 in air at about 70°C. The penetration dis-
tance of the leading edge effect evaluated from the
present boundary layer solution for various values of
Q is shown in Fig. 5 (solid lines) for R, = 4. It may be
noted that @ = 4600 and 3700 correspond to cylinder
material of copper and tungsten, respectively. It is
clear from Fig. 4(a) that the entrainment velocity is
non-zero up to X = 40 and is zero for X = 50. This
implies that the instantaneous location of the leading
edge effect is between X = 40 and 50. From Fig. 5, we
find that at t = 150 the leading edge effect is located
at X = 42 for Q = 5500.
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When 1 = 200, it is clear from Fig. 4(b) that the
axial velocity profiles for X < 80 are different from
cach other while the velocity profiles for X > 80 arc
exactly the same as at X = 80. This implies that one-
dimensional conduction governs the flow and associ-
ated fields for X = 80. Again from Fig. 5, the axial
position of the lcading edge cffect at © = 20018 78 for
Q = 5500.

From Fig. 5, we find that the time required for
the leading edge effect to reach X = 100 is 210 for
Q =4600. For r,=4 mm and R, =4, this cor-
responds to a physical time of about 10 s. It 1s also
evident from Fig. 5 that the leading edge effect propa-
gates faster as the thermal capacity decreases. This is
duc 1o the fact that the transient velocily associated
with materials of smaller thermal capacity is higher
since the heat flux on the cylinder is higher. Clearly,
for the same cnergy generation rate, the transient heat
flux is higher (as the absorption is less) for smaller
thermal capacity.

Also shown in Fig. 5 arc the penetration distances
of the leading edge effect (i) from the solution of
equation (7) (dashed lines), and (1) by applying the
criterion of no overshoot in the mass flow rate during
the one-dimensional process [14] (chain lines). It is
clear that equations (5)-(7) predict a slower rate of
propagation of the leading edge effect than the actual
valuc corresponding to the boundary layer solution
for all the values of Q. 1t should be mentioned that
cxactly the same conclusion was drawn by carlier
studies for a flat plate [14]. Tt is found that the time
required for the leading edge effect to reach X = 100
based upon the solution of equation (7) is 21.1. 23.8
and 24% higher than the actual time based upon the
boundary layer solution for @ = 5500, 4600 and 3700,
respectively. For smaller values of X, however, these
differences arc larger. It is worth mentioning here
that Mollendorf and Gebhart [9], and Mahajan and
Gebhart [10] also observed the actual propagation
rate to be 20% faster than that predicted by Goldstein
and Briggs [8] for a flat plate. Also. the prediction of
Goldstein and Briggs [8] is not much different [14]
from that of equation (7). For a flat plate, Joshi [14]
found that the criterion of no overshoot in the mass
flow rate during the one-dimensional process predicts
a faster rate of propagation of the leading edge cffect
than that based upon cquation (7). For the casc of a
cylinder, howcver, the reverse is true for all values of
Q. as is evident from the results in Fig. 5.

The transient local Nusselt number is shown in
Figs. 6(a) and (b) for ¢ = 3700 and 5500, respectively,
when R, = 4. It can be seen that the Nusselt number
profile at any instant is made up of two parts, namely,
(i) the part near the upstrcam end (small X-values),
and (i) the part near the downstream end (large X-
values) where the Nusselt number is independent of
X. While part (i) corresponds to the region of the
cylinder surface through which the leading cdge effect
has already passed, part (ii) corresponds to the region
where this effect has yet to reach and the one-dimen-
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sional conduction regime prevails as is evident from
the constant value of the Nusselt number. The patch-
ing point of the two parts denotes the instantanecus
location of the leading edge effect. For example, for

Q =5500
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F1G. 6(b). Local Nusselt number for Ry = 4 and Q = 5500.
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Q = 3700 at t = 100, this point lies around X = 25
and the actual value of the penetration distance at this
instant from Fig. 5 is 26. Moreover, it may be noted
that this point moves downstream with time.
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It is also evident from Fig. 6 that the Nusselt num-
ber at any location passes through a minimum before
reaching the steady-state value. A closer look at Fig.
6 reveals that the heat transfer coefficient at any
instant and at any location is higher for smaller values
of Q. owing to higher transient heat flux. Similar
results were also obtained for other values of Q.
The physical value of the steady-state heat transfer
coefficient at X = 100 is about 8.1 Wm > K~' for a
cylinder of 4 mm radius in air.

The transient surface temperature evolution is
shown in Fig. 7 for R, = 4 and Q = 5500 (solid lines).
For this case the time required to reach steady state
is around t = 10° which corresponds to a physical
time of about 4800 s in air for a cylinder of 4 mm
radius. For the same R, and for other values of 0, the
temperature evolution was found to be similar but at
a slightly faster rate. We may also mention that no
overshoot either in the boundary layer temperature
or velocity was found in the entire parameter range
reported here. However, an overshoot in the tem-
perature as well as the velocity profiles is observed
when @ = 0 or small. The absence of an overshoot
for the large values of @ is due to the fact that the
ratio of the heat capacity of the solid to that of air is
very high. For example, for stainless steel-316 and air,
this ratio is about 3000. Thus, for large values of Q,
the temperature rise of the cylinder is too slow for the
thermal capacity of the boundary layer fluid and the
time for boundary layer development to produce any
temperature or velocity overshoot.

Figure 8 shows the transient evolution of the
Nusselt number at X = 100 from the boundary layer
(solid line) and the one-dimensional (dashed line)
solutions for R, = 4 and Q = 3700. The one-dimen-
sional solution departs from the boundary layer solu-
tion at T =~ 194. From Fig. 5, we find that the lead-
ing cdge effect for this case arrives at X = 100 when
7 = 194 This is an indirect validation for the value of
¢ = 0.01 used in equation (8). The minimum value of
the Nusselt number occurs, however, at 1 = 230.
Table 4 shows the minimum values of the Nusselt
number at X = 100, the time when this minimum
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occurs, and the time when the leading edge effect
reaches X = 100 for R, = 4 and various values of Q.
Clearly, the minimum Nusselt number occurs well
after the arrival of the leading edge effect. Also, the
higher the heat capacity Q. the lower is the minimum
Nusselt number.

Results for two more values of R, namely, 0.5 and
1.5, were also computed. For a given fluid, different
values of R, correspond to a different radius of the
cylinder and/or a different value of the heat flux ¢”.
The steady-state profiles of axial velocity component
and temperature within the boundary layer for
R, = 0.5 are shown in Fig. 9. This value of R, cor-

Table 4. Local Nusselt number for R, = 4 and Pr = 0.72

7 when Nu., twhen L.E.E.

(/V“\/"Gr\! ' 4)m|n
Q at X' = 100 occurs crosses X = 100
5500 0.1505 260 228
4600 0.1528 245 210
3700

0.1558

230 194
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responds to a value of n,, = 0.1443 (when X4 = 100)
and falls under the category of wires (25]. While the
boundary layer thickness increases with a reduction
in R,, the boundary layer velocity decreases as the
cylinder gets thinner. A reduction in the cylinder
radius leads to a reduction in the surface area per unit
length and hence in the total energy generation rate.
These in effect reduce the boundary layer temperature
and buoyancy force leading to a reduction in the vel-
ocity within the boundary layer. The steady-state sur-
face temperature for Ry = 0.5 (dashed line) is shown
in Fig. 7. From this figure, it is clear that the thinner
the cylinder, the more uniform is the surface tem-
perature. The reason for this can be explained as
follows.

The thinner the cylinder, the thicker the boundary
layer and hence the greater the quantity of fluid
exchanging heat. Also, the thinner the cylinder, the
smaller the total energy generated. Since the total
energy to be convected away from the cylinder is
smaller while the fluid available for heat exchange is
greater, the surface temperature tends to be more
uniform.

Also shown in Fig. 7 is the transient evolution of
the surface temperature for R, = 0.5 and @ = 690.
This value of Q corresponds to a cylinder of stainless
steel-316 in air at about 70°C. This is also the case for
Q = 2060 when R, = 1.5. The surface temperature
evolution for R, = 1.5 and Q = 2060 is also similar
except that its evolution rate lies between the two cases
reported in Fig. 7. The penetration distance of the
leading edge effect from the boundary layer and
one-dimensional analyses are shown in Fig. 10 for
R, = 0.5 and @ = 690. The dimensionless time re-
quired for the leading edge effect to reach X = 100 is
125. This corresponds to a physical time of about 6 s
for a cylinder of 1 mm diameter in air. Similarly,

100

50

0 300
—>1
Fic. 10, Penetration distance of leading edge effect for
R, =0.5.
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from the results for R, = 1.5and Q = 2060, the physi-
cal time required for the leading edge effect to reach
X = 100 is found to be 8.2 s for a cylinder of 3 mm
diameter in air. Comparing Figs. 5 and 10, we find
that for the same heat flux value and the same cylinder
material, the leading edge effect prepagates faster for
a thinner cylinder. Despite the fact that the axial vel-
ocity component associated with a thinner cylinder is
smaller, the transient evolution of the boundary layer
velocity is faster than that for thicker cylinders.

Similar to the observation made for the results in
Fig. 5, the propagation rates of the leading edge effect
estimated from the one-dimensional analyses are
slower than the real one for R, =0.5. The time
required for the leading edge effect to reach X = 100
based upon equation (7) is 24% larger than the real
one. Moreover, the criterion of no overshoot in the
mass flow rate during the one-dimensional process
also predicts a slower propagation rate than that from
equation {7), which is contrary to the observation
made for a flat plate by Joshi {14]. Similar conclusions
also hold for R, = 1.5.

The evolution of the transient Nusselt number
for Ry =1.5 and 0.5 is similar to that for R, =4
shown in Fig. 6, except for a faster rate of evolution
and a higher Nusselt number as R, decreases. For
example, for R, = 1.5 and 0.5, the physical values of
heat transfer coefficient at X = 100 are 114 and
20.4 W m~? K, respectively, for cylinders of radii
1.5 and 0.5 mm.

The transient values of average Nusselt number,
Nu, averaged over the length of the cylinder, are
shown in Figs. 11{a) and (b) for various values of @
and R, Similar to the local Nusselt number, Nu passes
through a minimum for all values of R, and Q. For the
same heat flux and cylinder material, the thinner the
cylinder, the earlier this minimum appears. Also, for the
same radius ry and heat flux, the smaller the heat
capacity of the material, the earlier this minimum
appears. For R, = 4and O = 5500, Nureaches a mini-
mum value of about 53% of the steady-state value.
However, as the heat capacity or cylinder radius
decreases. this minimum value increases.

'Z 0.22 -

085 104 103 108 105
P —

FiG. 11(a). Transient average Nusselt number for R, = 4.



1304 K. VELUSAMY

1074
{om
{070
{068
{066
40-64 |

Nu/Grl*)

{062 —
4060

0 a 10° 10* 105
T—

F1. 11(b). Transient average Nusselt number for R, = 0.5
and 1.5.

Figure 12 shows the transient extension of the
boundary layer, R,, at the downstream location
X = 100 for various values of R, and Q. The edge of
the boundary layer was assumed to be the location
where the axial velocity component U reached a value
of 0.001. Clearly, the thinner the cylinder, the thicker
the steady-state boundary layer. For example, for a
cylinder of 4 mm radius in air, the steady-state bound-
ary layer thickness is 93 mm, while for a 0.5 mm radius
cylinder, it is 131 mm for all cylinder materials and
heat fluxes investigated.

The transient boundary layer thickness exceeds its
steady-state value for all the values of R, and Q.
For example, for R, = 4 and Q = 5500, the transient
boundary layer thickness exceeds the steady-state
value by about 24%. This value decreases as either
the heat capacity or the radius decreases. Another
observation is that this peak appears well after the
passage of the leading edge effect.
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F1G. 12. Transient boundary layer thickness.
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5. CONCLUSIONS

The transient boundary layer equations for (ree
convection adjacent to a heat generating vertical cyl-
inder have been solved numerically. The following
conclusions are drawn:

(a) The rate of propagation of the leading edge
effect for cylinders, predicted by the one-dimensional
conduction equations and equation (7), is found to
be slower than the actual value predicted by the
boundary layer equations.

(b) The criterion of no overshoot in the mass flow
rate during the one-dimensional process predicts a
slower rate of propagation of the leading edge effect
than that from equation (7) for the case of a cylinder,
while the reverse is true for a flat plate [14].

(c) The rate of propagation of the leading cdge
effect decreases as the radius and thermal capacity of
the cylinder increase, and as the heat flux decreases.

(d) The local Nussclt number passes through a
minimum during the transient for all values of the
cylinder radius, thermal capacity, and heat flux.
Similarly, the average Nusselt number also passes
through a minimum. The latter reaches a minimum
value as low as 53% of its steady-state value for the
largest R, and Q considered. The minimum value
increases as either the heat capacity or the cylinder
radius decreases, and is found to occur well after the
leading edge effect crosses that axial position.

(¢) During the transient, the boundary layer thick-
ness exceeds its steady-state value. This value is about
1.24 times the steady-state value for the largest R,
considered, and decreases with either the heat capacity
or the cylinder radius. Moreover, the peak value
appears long after the passage of the leading cdge
effect.

(f) The steady surface temperature distribution of
the cylinder for any R, is found to vary as 7 = hX*,
where the values of ¢ and b are presented tor R,
varying from 0.5 to 50.
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CONVECTION NATURELLE VARIABLE SUR UN CYLINDRE VERTICAL CHAUFFE

Résumé—On présente une solution numérique pour la convection naturelle variable sur des cylindres
verticaux chauffés, de capacités thermiques et de rayons différents. Une technique de différences finies
entiérement implicite est utilisée pour résoudre le systéme d’équations non linéaire. On porte une con-
sidération particuliére sur Ieffet de la vitesse de propagation du bord d’attaque. On trouve que cette vitesse,
prédite par la solution de conduction monodimensionnelle, est plus lente que celle résultant de la solution
de couche limite. Elle augmente quand le rayon et la capacité thermique diminuent et quand le flux
thermique 4 la surface augmente. L’épaisseur de couche limite variable excéde sa valeur stationnaire tandis
que le coefficient moyen de transfert atteint un minimum allant jusqu’a 53% de sa valeur stationnaire pour
la plus grande valeur étudiée du nombre de Grashof. Un accord excellent est obtenu avec les données
expérimentales du régime stationnaire ainsi qu’avec les résultats théoriques connus en monodimensionnel.

INSTATIONARE NATURLICHE KONVEKTION OBERHALB EINER VERTIKALEN
ZYLINDRISCHEN WARMEQUELLE

Zusammenfassung—Fir die instationdre natiirliche Konvektion oberhalb eines vertikalen wir-
meerzeugenden Zylinders mit unterschiedlichen Wirmekapazititen und Radien werden numerische
Losungen angegeben. Fiir die Losung des nichtlinearen Gleichungssystems wird ein implizites Finite-
Differenzen-Verfahren verwendet. Der Ausbreitungsgeschwindigkeit des Anstromeffektes wird besondere
Aufmerksamkeit gewidmet. Es zeigt sich, daB die durch eine eindimensionale Wirmeleitungsgleichung
vorhergesagte Geschwindigkeit geringer ist als die durch die Grenzschichttheorie vorhergesagte. AuBerdem
wiichst sie mit abnehmenden Werten von Radius und Wirmekapazitit des Zylinders, aber auch durch
Erh6hung der Wirmestromdichte. Die Dicke der instationdren Grenzschicht ist gréBer als im stationiren
Fall, wogegen der instationdre mittlere Wirmeiibergangskoeffizient ein Minimum erreicht, welches bei der
groBten verwendeten Grashof-Zahl 53% des stationdren Wertes betriigt. Die Ubereinstimmung mit friiher
gemessenen Werten fiir den stationdren Fall und auch mit theoretischen Ergebnissen fiir den ein-
dimensionalen Fall sind ausgezeichnet.
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HECTALIMOHAPHAS ECTECTBEHHASI KOHBEKUWA V TEINJIOBBIAEJSIOIEIO
BEPTUKAJIBHOT'O LHTUJIMHOPA

Aunnoramms—IIpelcTaB/IeHO YMC/IEHHOE pellleHHe 3aJaYd HeCTALHOHAPHON eCTECTBEHHON KOHBEKUHMH Y
TEIUIOBBIAENSAIOIMX BEPTHKANBHBIX LHIHHAPOB C PAa3JIMYHBLIMH paaMycaMH M TeMnepatypamu. Hemnn-
HeliHas CHCTeMa YpaBHEHHMH pellaeTcs HEeSBHBIM METOLOM KOHEuHbIX pasHocTeif. Ocoboe BHHMaHHE
obpalaercs Ha HHTEHCHBHOCTb pacnpocTpaHenus addecta nepened kpomku. HaiigeHo, 4to 3HaveHHe
HHTEHCHBHOCTH, NIOJIYMeHHOE PEILEHHEM OJHOMEDHOI'O YPaBHEHHMS TEIUIONPOBOAHOCTH, MEHbIIE 3Haue-
HH$, ONIPEAENAEMOrC H3 PELIEHHS MOTPaHHYHOTO CJios. KpoMe TOro, HHTEHCHBHOCTD PACTET ¢ yMeHbLIe-
HHEM Dafuyca M TEIUIOEMKOCTH LWIHHApPA M C YBEJIHYEHWEM TEIUIOBOTO MOTOKA HA MOBEPXHOCTH.
HaitneHo, 4TO TOJIUMHA HECTAIMOHAPHOIO MOTPAHUYHOTO CJIOS MPEBbILAET CTAMOHAPHOE 3HAYECHHUE, A
3HAYEHHE HECTALIMOHAPHOTIO YCPEJHEHHOro Ko3(@dHuUUEHTa TEMONEpeHoca JOCTHIaeT MHHHMYMa, COC-
TaBJIAOWEre 53% CTAUMOHAPHOTO 3HAYEHHA JUIS MaKCHMajibHOro MoXHHUMpoBaHHoro uucia I'pac-
roda. IMonyyeno xopollee coriacde ¢ NPENbIAYLIMME IKCOCPHMEHTAbHBIMH CTALUHOHAPHBIMH
JIAHHBIMH, 2 TAKXE C OJHOMEPHbIMH TEOPETHYECKMMH PE3yJIbTaTaMH.



